Seeds
data set is a 2 x 2 factorial layout, with two types of seeds, O. aegyptiaca 75 and O. aegyptiaca 73, and two root extracts, bean and cucumber. You observe r
, which is the number of germinated seeds, and n
, which is the total number of seeds. The independent variables are seed
and extract
.'The point of this exercise is to demonstrate a random effect. Each observation has a random effect associated with it. In contrast the other parameters have non-informative priors. As such, the models are not complex.
Previous post in the series PROC MCMC examples programmed in R were: example 1: sampling, example 2: Box Cox transformation, example 5: Poisson regression and example 6: Non-Linear Poisson Regression.
JAGS
To make things easy on myself I wondered if this data was already present as R data. That is when I discovered this post at Grimwisdom doing exactly what I wanted as JAGS program. Hence that code was the basis for this JAGS code.One thing on the models and distributions. JAGS uses tau (1/variance) as hyperparameter for the delta parameters and tau has gamma distribution. In contrast, all other programs use standard deviation as hyperparameter for delta parameter and hence gets the inverse gamma distribution. This distribution is available in the MCMCpack package and also in STAN. Gelman has a publication on this kind of priors: Prior distributions for variance parameters in hierarchical models.
library(R2jags)
data(orob2,package='aod')
seedData <- list ( N = 21,
r = orob2$y,
n = orob2$n,
x1 = c(1,0)[orob2$seed],
x2 = c(0,1)[orob2$root]
)
modelRandomEffect <- function() {
for(i in 1:4) {alpha[i] ~ dnorm(0.0,1.0E-6)}
for(i in 1:N) {delta[i] ~ dnorm(0.0,tau)}
for (i in 1:N) {
logit(p[i]) <- alpha[1] +
alpha[2]*x1[i] +
alpha[3]*x2[i] +
alpha[4]*x1[i]*x2[i] +
delta[i];
r[i] ~ dbin(p[i],n[i]);
}
tau ~ dgamma(.01,0.01)
s2 <- 1/tau
}
params <- c('alpha','s2')
myj <-jags(model=modelRandomEffect,
data = seedData,
parameters=params)
myj
Inference for Bugs model at "/tmp/RtmpKURJBm/model70173774d0c.txt", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha[1] -0.538 0.191 -0.907 -0.664 -0.542 -0.419 -0.135 1.005 440
alpha[2] 0.078 0.300 -0.550 -0.111 0.083 0.269 0.646 1.005 440
alpha[3] 1.342 0.284 0.768 1.164 1.340 1.524 1.895 1.004 1400
alpha[4] -0.807 0.441 -1.663 -1.098 -0.817 -0.521 0.046 1.009 300
s2 0.105 0.096 0.010 0.041 0.077 0.138 0.366 1.051 47
deviance 101.236 6.653 89.853 96.595 100.903 105.313 114.371 1.022 95
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 21.7 and DIC = 122.9
DIC is an estimate of expected predictive error (lower deviance is better).
MCMCpack
MCMCpack had some difficulty with this particular prior for s2. In the end I chose inverse Gamma(0.1,0.1) that worked. Therefor parameters estimates turn out slightly different. For conciseness only the first parameters are displayed in the output.library(MCMCpack)
xmat <- cbind(rep(1,21),seedData$x1,seedData$x2,seedData$x1*seedData$x2)
MCMCfun <- function(parm) {
beta=parm[1:4]
s2=parm[5]
delta=parm[5+(1:21)]
if(s2<0 ) return(-Inf)
step1 <- xmat %*% beta + delta
p <- LaplacesDemon::invlogit(step1)
LL <- sum(dbinom(seedData$r,seedData$n,p,log=TRUE))
prior <- sum(dnorm(beta,0,1e3,log=TRUE))+
sum(dnorm(delta,0,sqrt(s2),log=TRUE))+
log(dinvgamma(s2,.1,.1))
LP=LL+prior
return(LP)
}
inits <- c(rnorm(4,0,1),runif(1,0,1),rnorm(21,0,1))
names(inits) <- c(paste('beta',0:3,sep=''),
's2',
paste('delta',1:21,sep=''))
mcmcout <- MCMCmetrop1R(MCMCfun,
inits)
summary(mcmcout)
Iterations = 501:20500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 20000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
[1,] -0.59046 0.30456 0.0021535 0.03613
[2,] 0.01476 0.47526 0.0033606 0.04866
[3,] 1.48129 0.38227 0.0027031 0.03883
[4,] -0.93754 0.66414 0.0046962 0.07025
[5,] 0.35146 0.08004 0.0005659 0.05020
STAN
Stan had no problems at all with this model.library(rstan)
smodel <- '
data {
int <lower=1> N;
int n[N];
int r[N];
real x1[N];
real x2[N];
}
parameters {
real Beta[4];
real <lower=0> s2;
real Delta[N];
}
transformed parameters {
vector[N] mu;
for (i in 1:N) {
mu[i] <- inv_logit(
Beta[1] + Beta[2]*x1[i] +
Beta[3]*x2[i]+Beta[4]*x1[i]*x2[i]+
Delta[i]);
}
}
model {
r ~ binomial(n,mu);
s2 ~ inv_gamma(.01,.01);
Delta ~ normal(0,sqrt(s2));
Beta ~ normal(0,1000);
}
'
fstan <- stan(model_code = smodel,
data = seedData,
pars=c('Beta','s2'))
fstan
Inference for Stan model: smodel.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
Beta[1] -0.56 0.01 0.20 -0.97 -0.68 -0.55 -0.43 -0.14 1370 1.00
Beta[2] 0.08 0.01 0.33 -0.58 -0.12 0.08 0.29 0.72 1385 1.00
Beta[3] 1.36 0.01 0.29 0.83 1.18 1.36 1.54 1.97 1355 1.00
Beta[4] -0.83 0.01 0.46 -1.76 -1.12 -0.82 -0.53 0.04 1434 1.00
s2 0.12 0.00 0.11 0.02 0.06 0.10 0.16 0.42 588 1.01
lp__ -523.70 0.34 6.86 -537.26 -528.19 -523.73 -519.21 -509.87 403 1.01
Samples were drawn using NUTS(diag_e) at Sat Jan 17 18:27:38 2015.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
LaplacesDemon
While in the MCMCpack code I borrowed from LaplacesDemon the invlogit() function, in LaplacesDemon I borrow the InvGamma distribution. I guess it evens out. For a change no further tweaking in the code. Note that the core likelihood function is the same as MCMCpack. However, LaplacesDemon is able to use the correct prior. For brevity again part of the output has not been copied in the blog.library('LaplacesDemon')
mon.names <- "LP"
parm.names <- c(paste('beta',0:3,sep=''),
's2',
paste('delta',1:21,sep=''))
PGF <- function(Data) {
x <-c(rnorm(21+4+1,0,1))
x[5] <- runif(1,0,2)
x
}
MyData <- list(mon.names=mon.names,
parm.names=parm.names,
PGF=PGF,
xmat = xmat,
r=seedData$r,
n=seedData$n)
N<-1
Model <- function(parm, Data)
{
beta=parm[1:4]
s2=parm[5]
delta=parm[5+(1:21)]
# if(s2<0 ) return(-Inf)
step1 <- xmat %*% beta + delta
p <- invlogit(step1)
LL <- sum(dbinom(seedData$r,seedData$n,p,log=TRUE))
tau <- 1/s2
prior <- sum(dnorm(beta,0,1e3,log=TRUE))+
sum(dnorm(delta,0,sqrt(s2),log=TRUE))+
log(dinvgamma(s2,.01,.01))
LP=LL+prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,
yhat=p,
parm=parm)
return(Modelout)
}
Initial.Values <- GIV(Model, MyData, PGF=TRUE)
Fit1 <- LaplacesDemon(Model,
Data=MyData,
Initial.Values = Initial.Values
)
Fit1
Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values)
Acceptance Rate: 0.67594
Algorithm: Metropolis-within-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta0 beta1 beta2 beta3 s2 delta1 delta2 delta3
0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082
delta4 delta5 delta6 delta7 delta8 delta9 delta10 delta11
0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082
delta12 delta13 delta14 delta15 delta16 delta17 delta18 delta19
0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082
delta20 delta21
0.218082 0.218082
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 100.063 100.063
pD 26.630 26.630
DIC 126.692 126.692
Initial Values:
[1] 1.385256609 -0.634946833 1.456635236 -0.041162276 1.883504417
[6] -1.380783003 -0.688367493 0.210060822 0.127231904 0.710367572
[11] -0.865780359 -1.649760777 -0.005532662 -0.114739142 0.642440639
[16] -0.919494616 -0.829018195 -0.938486769 0.302152995 -1.877933490
[21] 1.170542660 0.131282852 0.210852443 0.808779058 -2.115209547
[26] 0.431205368
Iterations: 10000
Log(Marginal Likelihood): -27.92817
Minutes of run-time: 0.81
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 26
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 240
Specs: (NOT SHOWN HERE)
Status is displayed every 100 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 1000
Thinning: 10
Summary of All Samples
Mean SD MCSE ESS LB
beta0 -0.544001376 0.2305040 0.03535316 93.03421 -0.95266664
beta1 0.060270601 0.3458235 0.04387534 106.92244 -0.67629607
beta2 1.360903746 0.3086684 0.04838620 60.40225 0.76275725
beta3 -0.828532715 0.4864563 0.06323965 99.93646 -1.74744708
s2 0.134846805 0.1055559 0.01599649 68.64912 0.02549966
(...)
Summary of Stationary Samples
Mean SD MCSE ESS LB
beta0 -0.544001376 0.2305040 0.03535316 93.03421 -0.95266664
beta1 0.060270601 0.3458235 0.04387534 106.92244 -0.67629607
beta2 1.360903746 0.3086684 0.04838620 60.40225 0.76275725
beta3 -0.828532715 0.4864563 0.06323965 99.93646 -1.74744708
s2 0.134846805 0.1055559 0.01599649 68.64912 0.02549966
great article. I wonder for those of us not used to the Bayes approach you could also show the MCMCpack example using the MCMClogit() function in the package I guess this is just a wrapper for your MCMCfun() but it would help understand it more.
ReplyDeleteAlso the MCMCglmm package is becoming popular possibly that as well should be included. Anyway thanks again for a great article