Data
Data are from the main table. In addition, this sites table was manually browsed for interpretation of abbreviations.List of most important sites
Just by running counts the most important locations (more that 100 counts) are visible. As can be seen, each site has two parts. LC is an abbreviation for launch complex.Site Freq
1 NIIP-53 LC41/1 310
2 NIIP-5 LC31 308
3 NIIP-5 LC1 264
4 NIIP-53 LC43/4 243
5 NIIP-53 LC43/3 193
6 GIK-5 LC1 191
7 NIIP-53 LC132/2 172
8 NIIP-53 LC132/1 168
9 NIIP-53 LC133/3 123
10 CSG ELA2 119
11 CC LC17A 118
12 CC LC17B 107
13 GIK-5 LC200/39 106
14 NIIP-53 LC16/2 103
For ease of analysis, the Site is reduced to the first part. In addition, some sites have been renamed. The most important sites:
#NIIP-5=GIK-5=Baykonur
#NIIP-53=GNIIP=GIK-1=Plesetsk
#CC=Cape Canaveral=KSC=John F. Kennedy Space Center, Florida
#V=Vandenberg
#CSG=Centre Spatial Guyanais, Kourou, Guyane Francaise
In addition, for each site the country is determined. This led me to some confusion. Some locations seemed to be on the moon. However, I could not find the launches of the Apollo astronauts back from the moon. Finally, to remove this confusion and for ease of depiction I have only taken the locations with more than 10 counts. Two locations are not countries. A sea platform (Odyssee) and plane launch (Lockheed L-1011).
The plot shows the renames in Russia, but also the parallel usage of the names KSC and CC by the USA. VandenBerg gets used less over time. China and India got more active in the recent years.
Code
library(dplyr)library(ggplot2)
r1 <- readLines('launchlog.txt')
colwidth <- gregexpr('#',r1[2])[[1]] %>%
c(.,max(nchar(r1))) %>%
diff(.)
cols <- read.fwf(textConnection(r1[1]),
widths=colwidth,
header=FALSE,
comment.char='@') %>%
unlist(.) %>%
make.names(.) %>%
gsub('\\.+$','',.)
r2 <- read.fwf('launchlog.txt',
widths=colwidth,
col.names=cols)
r3 <- filter(r2,!is.na(Suc))
Sys.setlocale(category = "LC_TIME", locale = "C")
r3$Launch.Date..UTC[1:3]
r3$Date <- as.Date(r3$Launch.Date..UTC,format='%Y %b %d')
xtabs(~ Site , r3) %>%
as.data.frame(.) %>%
arrange(.,-Freq) %>%
filter(.,Freq>100)
#LC=launch complex
ll <- levels(r3$Site)
r3$loc1 <- factor(gsub('( |,)[[:print:]]+$','',ll)[r3$Site])
xtabs(~ loc1 , r3) %>%
as.data.frame(.) %>%
arrange(.,-Freq) %>%
filter(.,Freq>100)
#http://planet4589.org/space/log/sites.txt
#NIIP-5=GIK-5=Baykonur
#NIIP-53=GNIIP=GIK-1=Plesetsk
#CC=Cape Canaveral=KSC=John F. Kennedy Space Center, Florida
#V=Vandenberg
#CSG=Centre Spatial Guyanais, Kourou, Guyane Francaise
#JQ=Jiuquan Space Center, Nei Monggol Zizhiqu, China
#XSC=Xichang Space Center, Sichuan, China
#GTsP-4, Kapustin Yar, Volgograd, Rossiya
#L1011 = modified Lockheed L-1011 TriStar aircraft
#Odyssey = Sea launch from platform
locbycountry <- read.csv(text='
CC , USA
CSG , France
GIK-1 , Russia
GIK-5 , Russia
GNIIPV ,Russia
GTsP-4 ,Russia
JQ ,China
KASC ,Japan
KSC ,USA
L-1011 ,Air
MARS ,USA
NIIP-5 ,Russia
NIIP-53 ,Russia
ODYSSEY ,Sea platform
PA ,USA
SHAR ,India
TNSC ,Japan
TYSC ,China
V ,USA
WI ,USA
XSC , China',
skip=1,header=FALSE,
col.names=c('loc1','Geography'),
stringsAsFactors=FALSE,
strip.white=TRUE) %>%
arrange(.,Geography)
r4 <- xtabs(~ loc1 , r3) %>%
as.data.frame(.) %>%
# arrange(.,-Freq) %>%
filter(.,Freq>10) %>%
select(.,loc1) %>%
merge(.,r3) %>%
mutate(.,loc1=as.character(loc1)) %>%
merge(.,locbycountry) %>%
mutate(.,loc1=factor(loc1,levels=rev(locbycountry$loc1)))
ggplot(r4, aes(loc1, Date,col=Geography)) +
geom_point()+
coord_flip()+
geom_jitter(position = position_jitter(width = .25)) +
xlab('Geography') +
theme(legend.position="bottom")+
guides(col=guide_legend(nrow=2))